

GFEP

GS SDR Section 11

Ross Cox

Ground System Engineer

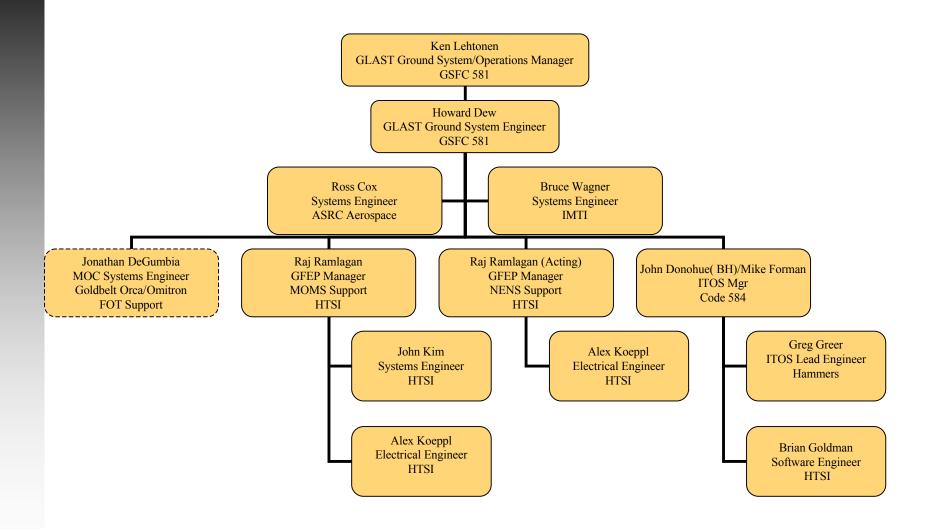
Outline

- Since SRR
- ► GFEP Overview
- Concepts of Operation
- Software

$Since\ SSR$ Peer Review RFA Resolutions

RFA	TOPIC	Status	Resolution		
1	Sustaining engineering	CLOSED	Sustaining Engineering activities have been defined and described/		
2	WAN data rate estimates	CLOSED	Rates have been revised to best current estimates		
3	Ground receipt time	CLOSED	No clock correlation is being performed so highly accurate GRT is not required.		
4	Contingency and return to service	CLOSED	Provided explanation of paging system, contingency responses and RMA requirements		
5	MOC system and GFEP interface	CLOSED	Matured MCE ops concept		
6	Playback GFEP autonomy	CLOSED	Automated Push not required remote initiated push will be used		
7	Implementation effort	CLOSED	Completed GFEP staffing with MOMS & NENS contractors		

Since PDR DDPR RFA Resolutions



DDPR RFA	TOPIC	Status	Resolution
1	RT OPS WRT ARs	Resolved	Explained AR impacts to Ops
2	Rooftop Ku @ GD	Resolved	No Impact to GFEP Explained Plans
3	GFEPs in GD Clean Room	Resolved	Accept Recommendation to avoid this if possible
4	Provide detailed D ata Flows into and out of MOC and I&T Facility	Resolved	Provided Flows
5	Encryption a nd authentication in commanding the spacecraft	Resolved	GFEP does not send commands. The command encryption issue is being tracked at the Project Level
6	CNE, Restric ted IONet and Closed IONet Connectivity	Resolved	MOC is on Restricted IONet All Connections are through appropriate firewalls.

Since PDR GFEP Development Organization

GFEP Overview - Why GFEP?

- GLAST Mission Requirements Include:
 - 40 Mbps Ku-band Return Data
 - Reed Solomon Decoding
 - On-site VC Splitting
 - Separation Of Low Rate RT Channels From High Rate Stream
 - Storage For 7 Days
 - Autonomous System For Support GLAST 8x5 MOC Ops
- Project Independence From Other Missions
- Desire For Passive Interface To WSC

GFEP Overview Data Supported

- The GFEP Supports Ku-band Return Data ONLY:
 - Real Time Housekeeping Telemetry
 - 51 Kbps On VC0
 - Real Time Burst Alerts And Diagnostic
 Data
 - 1 Kbps For Burst Alerts On VC1
 - ~49 Diagnostic Kbps On VC1
 - Observatory Stored RAM Dumps
 - 5 Mbps (Instead Of Observatory HK Recorder Dumps) On VC2
 - Observatory Housekeeping Recorder Dumps
 - 8 Mbps On VC 3
 - LAT And GBM Science Recorder Dumps
 - 34.9 Mbps On VC 8 And 9
 - Fill Frames
 - On VC63

- The GFEP Does NOT Support:
 - S-Band
 - Commanding
 - Non-contact Burst Alerts Or Safehold Telemetry
 - Via DAS(MA) On VC 11
 - "Low Rate" Real Time
 Observatory Housekeeping
 Telemetry
 - 1 Kbps Via MA Return On VC10
 - 4 Kbps Via SSA Return On VC10
 - "Low Rate", I.E., 2.5 Mbps Observatory Housekeeping Recorder Dumps

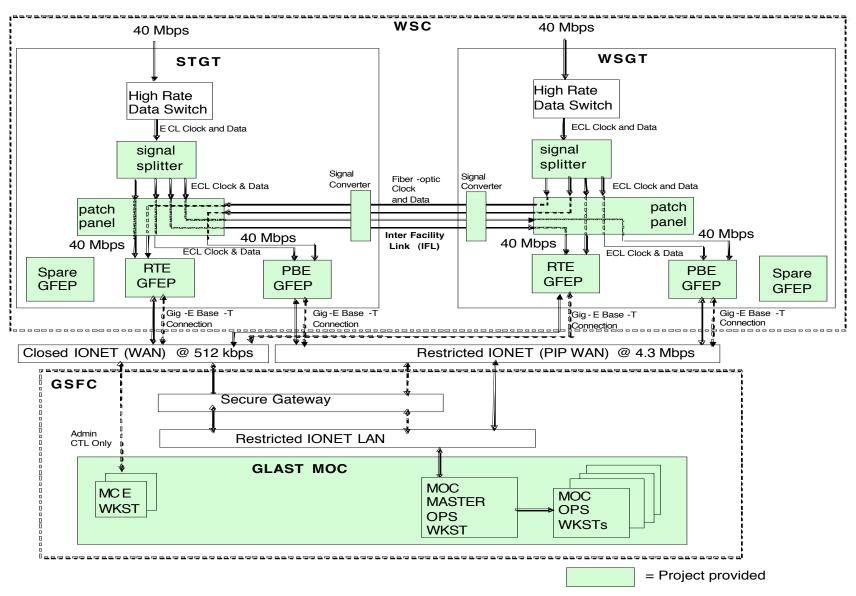
Concepts of GFEP Operation Basics

- There are two types of GFEP Elements, RTEs and PBEs
 - Real Time elements transmit Real time data
 - PBEs transmit Playback Data

Similarities

- Both receive 40 Mbps stream from WSC equipment
- Both save raw data
- Both separate and save VC files

Differences


- RTE transmits to MOC during real time
- PBE transmits to MOC post pass

NO COMMANDING VIA GFEPS

System Architecture

GLAST Kuband Front End Architecture With Ground TermunastsStrapped Redundance

Concepts of GFEP Operation

- The MOC will receive two real time streams and select which one to broadcast to the other MOC terminals
 - Both RTE can flow data at the same time due to small real time bandwidth required
- Each PBE will establish two socket connections to the MOC master workstation
 - Connections are for status and control
 - Only one PBE will be designated as prime and it will establish its playback data connection after each pass via commercial software data transfer activated from a STOL procedure on the PBE
- Once initialized and connected all four machines (both RTEs and PBEs) maintain connectivity via status messages to the MOC.
- The GFEPs are data driven and not scheduled

Concepts of GFEP Operation

Contingencies

- Playback Failure
 - FastCopy does not transmit data
- GFEP Element Shutdown
 - RTE or PBE Failure
- GFEP Control Function Failure
 - MOC workstation (MCE) Failure
- Network Failure

Software Design

Architecture

- ITOS coupled to the STPS packet processor
 - Incorporates the robustness and reliability of the STPS packet processor with the robustness and reliability of ITOS
 - Capitalizes on existing ITOS to ITOS directives
 - Retains the ability to extend operations concepts without significant impacts to software baseline
 - Retains user interface and operator environment

Non Recurring Engineering

- Integrate STPS and ITOS
- Incorporate software interface to EDT card
- Add code to generate and forward processing status block to MOC
- Add file transfer application (FastCopy, FTP, etc)
- Develop appropriate STOL scripts and local displays

Software Component Reuse

▶ ITOS

- Display Subsystem -- GUI, pages, trends and plots
- STOL Subsystem -- Automation and remote control
- Telemetry Subsystem Components -- Frame archiving, buffering, and forwarding with robust socket maintenance

STPS

- Active Port Select
- Telemetry input, frame synchronization, de-randomization, and Reed-Solomon Decoding
- Archive raw bit stream
- Status reporting
 - Updated to share existing status counters with ITOS
 - Update frame quality wrapper (or add compatible quality wrapper handler to ITOS)

Common GFEP/MOC Interfaces

Maintenance

- Operating system and application patches and upgrades. OS patching is provided by applications within the OS.
- Application patches and updates will be applied manually using file transfer and remote login.

Remote control

STOL to STOL socket interface already available in ITOS

File transfer

 FASTCopy product from SoftLink will be used for all telemetry file transfers.

Operational Hardware Baseline

Architecture

- Intel Dual CPU Based Box
 - Pentium 4 3.2 GHz Xeon CPU processor with 2 MB CPU Cache
 - 4GB RAM
 - RAID 5 Ultra 320 SCSI RAID Controller board (500GB)
 - Size for 126Gb x 7 Day requirement
 - Gigabit NIC Card
 - EDT 400 (dual port) card (baseline is one card per RTE/PBE)

Performance Tests To Date

STPS Packet Processor, input from Analog Recorder with output to monitor

Processor Speed: Dual Xeon 2.4Ghz Operating System: Enterprise

RedHat 3.0 CPU Usage: 30-40% at 40Mbps

Clock Freq (Mbps)	Frame Sync	RS-D	Pn-D	Disk Store	Xmtted frames	RS Error Insert	Frame Drop	RS Corr Error	Good Frames
25	On	Off	On	On	3830000	N/A	1	N/A	3830000
25	On	On	On	Off	3830000	224	1	224	3830000
25	On	On	On	On	3830000	224	1	224	3830000
30	On	On	On	Off	3830000	224	1	224	3830000
30	On	On	On	On	3830000	224	1	224	3830000
35	On	On	On	Off	3830000	224	1	224	3830000
35	On	On	On	On	3830000	224	1	224	3830000
40	On	Off	On	Off	3830000	N/A	1	N/A	3830000
40	On	On	On	Off	3830000	224	1	224	3830000
40	On	On	On	On	3830000	224	1	224	3830000

Development Process & Schedule

Spiral Development Model

- August04
 - Baseline GFEP Design and I&T Plan
 - Support GLAST SDR
 - Integrate ITOS and Prototype HW in B25
- September04
 - Baseline GFEP Design Document
 - Deliver GFEP SW Release 1.0 (Engineering Release)
 - Perform functional tests in B25
- November04
 - Deliver 2 Functional Prototypes to B23
 - Conduct interface testing in B23

Development Process & Schedule 🦞

- Integrate in B25, B14 then WSC
 - December04
 - Continue interface testing
 - January05
 - Deliver GFEP Operational Release 1
 - Conduct GFEP stress tests in B23
 - Initiate MOC/GFEP interface testing in B14
 - March05
 - Deliver GFEP Operational Release 2
 - Conduct regression MOC/GFEP interface tests in B14
 - Utilize WAN network connectivity
 - April05

Conduct GFEP pre-ship review

Maintenance Strategy

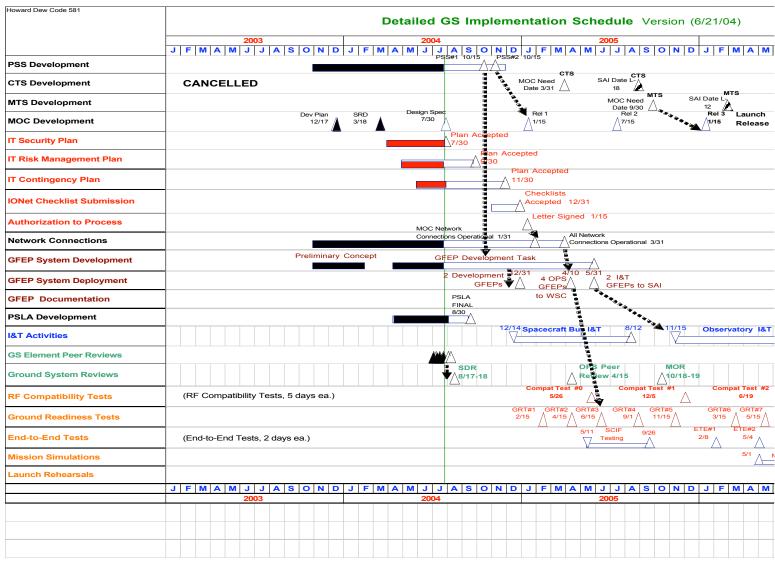
Configuration Management

- All software (ITOS, STPS, EDT, procs) will be maintained under the ITOS CVS repository in Code 584's Real-Time Application Laboratory.
- Operational releases will be delivered to the Code Software Library
- Documentation will be delivered to NASA and maintained in HTSI's HIIMS portal

Sustaining Engineering

Hardware and software sustaining will be performed under Code 444

Required Documentation



GFEP Functional And Performance Specification	8/30/04
ICD Between GFEP And MOC	Draft 8/30/04
	Final 11/30/04
ICD Between GFEP And WSC	Draft 8/30/04
	Final 11/30/04
GFEP Appendix to ITOS User's Guide	Draft 11/30/04
	Final 3/31/05
Design And Configuration Drawings	1/31/05
Ops Agreement Input to MOA Between GLAST And WSC	1/31/05

Programmatics GS Development Schedule

Pending Design Issues

ITOS integration

 To handle diagnostic data bursts of up to 900 kbps with a 512 kbps output network connection, the GFEP needs to utilize ITOS' ability to buffer telemetry output.

Programmatics The Road to GFEP Readiness Review

Begin efforts with development machines

- Port over necessary software
- Connect to various data sources
- Test and Demonstrations of Capabilities
- Detailed Installation discussions with WSC

► Clone Development Machines into Ops Machines

- Bench test them
- Ship to WSC and install
- Installation Test

Conclusion

- ▶ The design is stabilized around a workable solution
- ► We are aware of the remaining issues and have plans to effectively deal with them
- ► We have proto-type results that show we can meet requirements
- ▶ We have procured two development machines for software development and test

GFEP Backup Slides

GS SDR Section 11

Ross Cox

Ground System Engineer

Concepts of GFEP Operation Initialization



- Six machines are at WSC
 - Two at WSGT and Two at STGT with one cold spare at each site
 - Any machine can be brought up as either an RTE or a PBE (not both)
- ▶ The MOC will designate a single MOC workstation as Master
 - Receive all telemetry and status blocks
 - Execute ground and observatory PROCs
- The MOC will have an MCE workstation to configure RTEs and PBEs
 - It notifies the RTE and PBE which MOC workstation is Master
 - Each RTE will establish three sockets to the MOC master workstation
 - Connections are for data, status and control

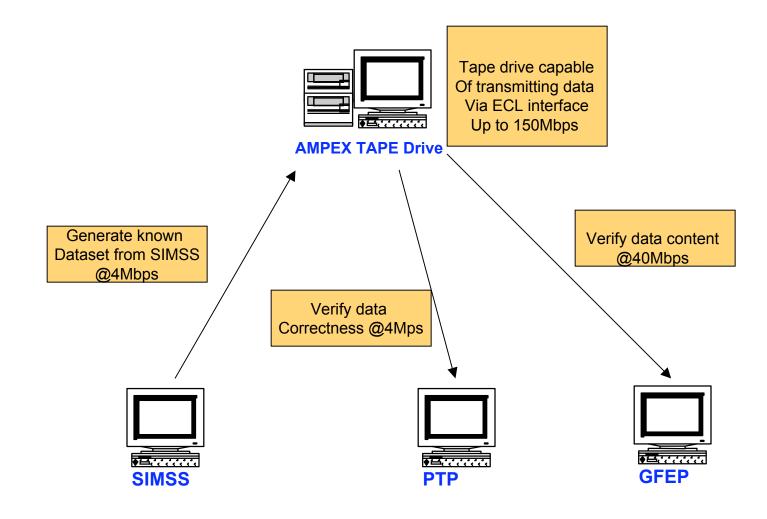
Concepts of GFEP Operation

Contingencies - The GOOD News

- Ops con has lots of room to make up for loss of a playback support
 - Designed to deal with 5 hour off pointing operations due to TOO or
 AR
 - We will schedule 10 minute supports
 - 5 min 17 sec needed to get typical three hours of science played back
 - If we start 40 sec after AOS and end 5 sec before LOS then 9 min 45 sec is available per support.
 - 10 min for a whole day of housekeeping not an issue
 - All Daily Science Data could be acquired in 5 passes
 - May transition to a 5 pass operation in out years, but baseline is eight supports with 7 minutes of Ku-band downlink ability.

Concepts of GFEP Operation

Contingencies - The GOOD News



- Since MOC commands Dump start, It's hard to lose a dump
 - SC will not dump into the void
- Passes could be added for strange situations
 - Full recorder
 - TDRS conflict with other missions
 - Operator induced data loss

GFEP Test Environment

